Tag Archives: dry fabrics

Raw material suppliers outlook a good future for dry composite materials

TwitterLinkedIn

Key structural composite components are being manufactured with dry preforms and resin infusion, replacing in many cases the use of prepreg materials for parts manufacturing. In this sense, raw material suppliers play a key role when developing the newest materials to meet the aerospace sector strict quality requirements. What are their thoughts regarding the use of infusion process for the aerospace industry?
We have had a short interview with some experts in the area. Henri Girardy, from Hexcel and Sven Blank, from Saertex have shared their overview about this subject with us.
Thank you Henry and Sven!

Saertex HExcel

1. What are the primary benefits that Infusion offers in aerospace applications, compared with long established prepreg and autoclave curing processes commonly used today? What applications appear to be most promising?

Sven Blank (SB): Multiple layers/orientations in a single fabric can facilitate higher deposition rates resulting in savings of both time and money. Moreover, the use of NCF can eliminate some, if not all debulking processes. In addition, most infusion materials can be stored at ambient temperatures and have extended shelf life (1-2 years) when compared to prepregs. This way, the material handling is simpler and there is no need to chart out time or storage temperature and it is not required to wait until materials come to ambient temperature.
There is no risk of foreign materials to be present in laminates due to use of release paper, etc.

Henry Girardy (HG): Key benefits are cost and production rates. Cost savings have been demonstrated in part design, function integration, less assembly time, and potentially fewer finishing operations.

2. Automation such as AFP has played an important role increasing quality, increasing rate and reducing cost of parts made with prepreg. Are there opportunities to do the same with Infusion processes?

SB: Parts with complicated geometries, thick parts or parts with large surface areas are requiring higher deposition rates. Therefore automated dry fabric deposition technology could be a good option to enhance increasing rate and quality. On the other hand, narrow dry tapes could be used as localized reinforcement of NCF lay ups.

GH: We strongly think that automation of the dry preform is a key success of factor for aerospace structures made by OOA technologies. OEMs and Tier 1s are looking forward for eliminating the costly autoclave curing process.Moreover, as we see it, one of the main reasons why dry materials do not fully meet the mechanical performance requirements for primary structure, is the lack of automation in lay-up process. Therefore, there is a need to automate the process.

3. It is a commonly held perception that infused materials do not provide as good mechanical properties as prepreg/autoclave materials.
a. If true, this means that an Infused part will have a weight penalty?.
b. If false, what can be done to improve the understanding of these materials?

SB: Infused materials could also provide good mechanical properties, but there is some work to be done to improve the understanding of the materials. Such as…
-Educating customers regarding the advantages of NCF and infusion.
-Expand marketing of  infusion materials into aerospace applications
-Publish/present data from controlled experiments comparing infused and prepreg laminates.

GH: The new materials, such as our HiTape® fabric, enables really good properties in vacuum infused parts. Parts up to 30mm thick with a 58 to 60% fibre volume content can be achieved. Infused materials will play a key an important role for next generation aircraft, due to the fact that apart from weight, costs will also drive the material and technology choice.

-Sampe Europe 2014: from aerospace OoA to automotive thermoplastics

TwitterLinkedIn

The title of the 35th International Technical Conference & Forum organized by SAMPE was “Low cost Composite Processing, from Aerospace OOA to Automotive Thermoplastic”. As the title indicates the main issues were the way to decrease the manufacturing cost in aerospace composites and the relation between thermoplastics and composites in automotive.

As it is known, it is very important to avoid the autoclave in order to reduce the composites manufacturing

  • reducing tooling cost for component development and low-rate production runs
  • adding capability for manufacturing of very large highly integrated composite components
  • reducing capital costs for autoclave and associated facilities
  • and removing autoclave bottleneck for production

Different methods for avoiding the autoclave were discussed along the conference, the experts presented different projects related to this subject, focused on the use of NCFs and resin infusion methods (summarized below).

Taking into account the unique challenge of increasing the presence of composites in new single aisle aircraft, current works are targeting at developing robust, fully automated processes for the realization of large scale structures. New functionalities are being added to existing materials, like e.g. enhancing conductivity for the improvement of lightning strike behavior.

On the other hand, thermoplastic materials are being optimized and, last but not least, new multi-functional composite materials are under development to broaden the range of composite applications. In addition, huge efforts are being undertaken to enable structural bonding for composite repair.

With respect to the automotive application, the use of carbon fiber reinforced thermoplastic was considered the next challenge. The laser assisted and induction processes in welding and heating with thermoplastics were the most important topics of discussion.

Related to the main subject of the DRY COMPOSITES blog, some projects have been outlined from the conference:

  • In terms of OoA manufacturing technologies by means of NCF and RTM, Airbus Military presented its BAHIA project, focused on alternative fan cowl doors configuration and manufacturing.  Within the project framework a new fan cowl door is designed and a RTM technology is used in order to manufacture the structure, by eliminating 2 autoclave curing cycles and joining grid and skin through a unique bonding line. This way, Airbus Military intends to obtain a more competitive and reliable product.

       Co-authors: Javier Gomez Vega, Maria Antonia River Orellana, Luis Rubio García

Airbus 340-642 fan colw door

Airbus 340-642 fan cowl door

  • Researches from Irish Centre for Composite Research, MSSI and University of Limerick presented a design of experiments study assisted in optimising the LRI manufacturing process (liquid resin infusion). According to them, LRI processes is challenging due to the difficulty in achieving full fibre wet-out, target fibre volume fraction and acceptable void content etc. In this study, flat composite panels were manufactured using aerospace grade Benzoxazine resins systems (one of which is targeted at high temperature applications) and aerospace grade carbon fibre NCF (non-crimp fabric with and without powder binder).

      Co-authors: Anthony Comer, Dipa Ray, Winifred Obange, Gearoid Lancy, Inga Rosca, Walter    Stanley

Double-omega stiffened skin manufactured by VIM using Benzoxazine B.

Double-omega stiffened skin manufactured by VIM using Benzoxazine B.

  • Other EADS, Eurocopter and University of Stuttgart researchers did also present a study, aimed at the fundamental material behavior of such unidirectional-braided structures, which are converted from carbon-fibers and thin thermoplastic auxiliary-yarns directly to the part geometry as UD-plies. The promising results emphasize the feasibility of using UD-braiding for structures with high stiffness as well improved damage resistance.

Co-authors: C. Metzner a, A. Gessler a, C. Weimer a, U. Beier b, P. Middendorf

UD-braiding – the machine, process and textile

UD-braiding – the machine, process and textile

 

-Aerospace Looking to Dry Fiber/Infused Composites

TwitterLinkedIn

Most aerospace composite structures are produced today using prepreg and autoclave cure. Recently an increasing number and type of large and critical structures are being manufactured in a very different way – using Preforms assembled from dry fabrics and tapes and then infusing the epoxy resin into the Preform followed by cure. If the infusion is performed in a matched closed mold under high pressure, the process is called RTM. For many larger parts, infusion is performed using vacuum pressure only with single surface tools. This process has many different names reflecting slight differences in the infusion process including VARTM, CAPRI, VAP, RTI, RFI, BRI, SCRIMP and several others.

A wide range of aerospace parts are fully qualified and in production today made from dry fiber and vacuum infusion – a few examples are shown below. Some of these assemblies, such as flight control surfaces (flaps and ailerons) and fuselage frames are considered secondary or redundant components. Others such as the Aft Pressure Bulkheads of the A380 and 787 are primary structure – failure of these critical components would likely lead to loss of the aircraft. The A400 Cargo Door operates in an even more challenging environment – this flat and large door sees full cabin pressurization, and experiences significant bending  and tension loads during flight.

That these highly critical parts are made using these materials and processes speaks to the high degree of confidence that the aircraft OEM’s and regulatory authorities have in the reliability, performance and safety of the dry fiber/infusion approach.

787 Dry fiber/infused parts include (left to right) ailerons and flaps, fuselage frames and the aft pressure bulkhead (APB) of the fuselage

787 Dry fiber/infused parts include (left to right) ailerons and flaps, fuselage frames
and the aft pressure bulkhead (APB) of the fuselage

A380 Aft Pressure Bulkhead (APB) and A400 pressurized Cargo Door

A380 Aft Pressure Bulkhead (APB) and A400 pressurized Cargo Door

Arguably the most advanced use of dry fibers and infusion is in the wings of next generation airliners such as the Bombardier CSeries and Irkut MS21 aircraft shown below. These aircraft, serving 120 to 200 passengers, are the newest in commercial aviation and have leveraged the latest advances in composite materials, processes and production methods available today. The CSeries has passed ground structural tests and is expected to make its first flight mid 2013, with the MC21 to follow about a year later.

The Bombardier CSeries wing (left) and Irkut MS21 wing (right) both are made from dry fiber preforms and resin infusion

The Bombardier CSeries wing (left) and Irkut MS21 wing (right) both are made from dry fiber preforms and resin infusion

How about your company – is this technology being considered and for what applications? What are the benefits, tradeoffs, concerns and issues associated with the use of these processes? Let us know what you think.