Monthly Archives: July 2013

-Advanced dry composite materials offer new opportunities in the aerospace industry

TwitterLinkedIn

The number of flights expected for the next 2 decades shows a an annual growth rate of 4.7%, but needs to satisfy very tight constrains on fuel consumption (with fuel consumption being about 30% of the operating cost). It is required to strongly reduce fuel consumption of the future aircrafts manufactured.


ScreenHunter_1350Growth perspective for annual flights from AIRBUS market forecast

One of the approaches required to do so is the introduction of advanced materials to reduce their weight, and composite materials in particular. Major manufacturers have increased the content of composite materials from 5% (A300) to 52% (A350XWB) for AIRBUS or to 46% for the CSeries (Bombardier), including wings, fuselage, and other structural parts etc.

Traditionally, structural components in aerospace have used carbon fiber pre-impregnated with epoxy resins (pre-pregs) that require to be cured in an Autoclave. Although the properties of the pre-pregs are outstanding, the cost associated to the maintenance, shelf life and autoclave processing of these pre-pregs represents a high percentage of the total cost of the part.

In order to reduce these costs, a strong effort has been performed to develop dry composite materials with suitable material properties, and reduced manufacturing costs due to higher deposition rates, no costs of refrigeration, and longer shelf life.  Due to this effort, the use of dry composite materials emerges as a new material feasible for the manufacture of structural components.

The CSeries Aircrafts, from Bombardier Aerospace represents a breakthrough in the use of composite materials, since some of their structural components, such us the wings are being manufactured using dry composite materials. Bombardier expects to reduce 20% the fuel consumption, and have 25% less maintenance costs. The CSeries aircraft is expected to make the first flight shortly. In particular, the manufacturing process is based on pick and place of dry composite material cut on a 2D table and positioned in the mould.

Bombardier

Bombardier is not the only one aircraft manufacturer that uses dry composites in the design of the new aircraft to reduce costs and increase productivities: A400M from AIRBUS cargo door (also a structural component) is also manufactured using dry composite materials. Furthermore, their manufacturing method uses alternatives to autoclave, by means of the VAP (vacuum-assisted process) demonstrating that dry composite materials can achieve mechanical properties required to be used in structural components. The manufacture of these components also takes benefit of the combined infusion of the different parts (skin and stringers), avoiding about 3000 metallic rivets.

0507HPC_IM_A400M_Step_3The investigation and development on dry composites, offers a critical opportunity to push forward the presence of composite materials in the aeronautic field by reducing costs, and maintaining the mechanical properties of pre-preg materials.

Airbus and Bombardier are setting up the first steps regarding the use of dry composites in the aeronautic sector. This sets the path to the industrial development of processing technologies of the fabrication of the materials and the components, and moving from manual manufacturing for short series to high production for larger series, as has happened with glass fiber or pre-preg carbon fiber materials.

There are still strong challenges remaining to take full advantage of this disruptive material that require a strong synergy between all the agents responsible of the introduction, design and development of components manufactured from dry composite materials: companies, Research Centers, academics and experts. 


-We go dry

TwitterLinkedIn

Imagen

Dry Composites is an initiative by Danobat Composites to share the latest advancements in automation using dry composite material. This online community aims to connect companies, research centers, academics and experts interested in the use of dry composite material to develop structural parts in aerospace.

What do we mean by Dry Composites? There are two distinct methods of making composite structures. The first involves impregnating the fibres in a dedicated off-line machine to make a pre-impregnated material, called pre-preg. This is then transported to a factory that makes structures where it is laid up by machines or manually.

The second, more direct route is to take dry fibres, usually in some textile format and after assembly into a pre-form, infuse them with liquid resin. The infusion process is known by a number of trade names and acronyms such as RTM, VARTM etc.

The pre-preg route involves an extra process and hence cost, but it does result in structures with good consistent properties. Recently, the performance of structures made by infusing Dry Preforms has improved and is now claimed by some, to match that of more conventional pre-preg materials. Working with dry fibers, fabrics and textiles enables thicker layers to be used, saving time and labour costs, plus aiding in the creation of more complex, one-piece structures.

However whereas the pre-preg manufacturing industry is well served by automation with dedicated machine tools, the lay-up of dry fabrics has not received the same attention. Danobat Composites has pioneered the development of Automatic Tape Laying using woven and NCF fabrics. This has improved laminate quality, repeatability and reduced the cost of composite structures by significantly cutting manufacturing labour and material costs. Moreover, it is worth mentioning that the use of dry materials can give rise to out of autoclave curing processes acquiring required properties in primary structural aerospace parts.

Today, manufacturers face the challenge of doing more with less, the aerospace industry needs to adapt quickly to new material and process developments to remain competitive. In doing so, the ultimate goal of a disruptive automation technology is to introduce new processes that may deliver better high efficiencies and control at less cost. This requires broad support from an ecosystem of R&D, manufacturing, engineering teams and material developers.

Dry Composites is an open space for those interested in learning more about how automation using dry composite material can be applied to the aerospace industry. From sharing industry news, information, data and technical solutions about dry composite solutions to interviews and perspectives from expert sources. Our target audience includes decision makers, R&D engineers, global suppliers of advanced materials, software and automation companies.

If you are interested in learning more about advancements in the use of dry material in the aerospace industry, follow us on Twitter @drycomposites and join the LinkedIn Group Dry Composites.

Stay tuned for more!